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INTRODUCTION

The objective of this research was to explore the range of analytical information on

the defect structure of doped and semi-insulating GaAs obtainable from computational,

non-invasive, near infrared absorption analysis. Motivation for this research was provided

by the realization that the establishment of meaningful property specifications for device

material is contingent on non-invasive defect analysis executable in a fabline environment.

Infrared absorption measurements on a micro- and macro-scale in combination with

computational image processing and analysis were found to meet the requirements of the

stated research objectives.
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SUMMARY

Optical semiconductor characterization by computational NIR absorption analysis

has been found to be an eftective approach to the determination of the following

. properties:

• dopant concentration and distribution (macroscale)

0 local segregation effects (microscale)

• residual macro-stress

• dislocation density and distribution
a stress, associated with dislocations
a precipitates

* annealing effects

* subsurface damage

The broad spectrum of defect identification was achieved by complementing conventional

bright field transmission microscopy with dark field, phase contrast and polarized light

microscopy.

The approach taken is characterized by its non-invasive nature, applicability on a

macro- and micro-scale, high resolution, rapid execution and digital data storage with

spatial coordinates suitable to conduct subsequent correlation analyses with spatial

distribution of device deficiencies.
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APPROACH TO RESEARCH

The analytical technique develop--d for rapid, non-destructive defect analysis in

semiconductors is based on quantitative image analysis in conjunction with near infrared

(NIR) transmission microscopy. NIR microscopy provides an image of the semiconductor

sample (0.5-2 mm. thick) reflecting any local variations in the absorption coefficient across

the field due to the presence of defects. Qualitatively this image provides an excellent

representation of material uniformity. It contains in addition, however, information which

can be used for the quantitative determination of local free charge carrier concentrations

and lattice stress conditions, for example.

NIR microscopy relies on an imaging device such as a CCD camera or a silicon

vidicon camera to detect transmitted radiation. To quantify the image, the output oi the

camera is used as input to a digital image processor where the signal is digitized into a 512

by 480 pixel array with a dynamiic range of 256 gray levels. The image processing system

provides for multiple image storage and near real time whole image mathematics

capability. The approach taken for data calibration is to increase the gain of the system so

that the entire range is distributed over the limited transmittance range exhibited by the

sample; using neutral density filters, the measured gray level value can then be equa1ted to

transmittance. Comprehensive defect mapping can be accomplished by determination of

the IR (and, as applicable, the visible) spectrum for a given material by means of an FTIR

spectrometer and identification of chemical defects, for example, through their

characteristic absorption peaks (fig. 1). The spatial distribution of these defects is

subsequently analyzed and the corresponding data are stored in digitized form with their

spatial coordinates. The fundamental characteristics of computational optical defect

analysis are presented in fig. 2. The mode is non-invasive, applicable to both the micro-

and macro-scale with a maximum spatial resolution approaching 1 g~m; data storage with

3



spatial coordinates is provided for with complete image analysis requiring a fraction of one

second.

Computational image analysis has been applied to dopant concentration analysis,

stress analysis, dislocation density measurements in conducting and semi-insulating

matrices, surface damage measurements and precipitation analyses. Work is in progress on

the determination of lattice damage associated with ion implantation and on the

identification of defect propagation into epitaxial layers.

The non-destructive nature of the computational image analysis in combination with

digital data storage provides a means for the conduct of a statistical correlation analysis

between device and spatially coincident wafer characteristics. Such analyses can be

accomplished upon subjecting the analyzed wafer to device processing and mapping the

intermediate processing steps as wel] as the spatial distribution of yield and performance of

devices (fig. 3).

4
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Characteristics:

* Mode: Non-Invasive
* Scale: Macro, Selected Micro
* Resolution: (as applicable) Micron to Sub-Micron Range
* Data Storage: Digital with Spatial Coordinates

*Analysis lime: Fractional Seconds

Properties revealed by non-invasive Optical analysis:
~ Dopant Concentration and Distribution (macro)

Local Segregation Inhomogeneities (micro)
Residual Stress Distribution (macro)
Dislocations (•micro)
Stress Associated with Dislocations (micro)
Precipitates (micro)
Surface Damage (macro, micro)

Annealing Effects (macro, micro)
Absorption peaks in visible and I"IR range

Fig.2 Capanilties of Semiconductor Characterization by Computational Absorption Analysis
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RESULTS

An NIR transmission micrograph of commercial Te-doped GaAs with a

corresponding free charge carrier (dopant) distribution analysis is given in fig. 4. (The

section analyzed was cit from a crystal along its growth axis.) The quantitative microscale

analysis reveals that microsegregation effects associated with LP-LEC growth of GaAs

result in compositional fluctuations which, over micron dimensions, approach and. in some

instances exceed one order of magnitude. This finding is contrasted by the general belief

that such fluctuations are in the range of ±15 to 30% of the Overage doping value. It is also

found that, contrary to expectation, the striation pattern is discontinuous along the crystal

diameter. On the basis of this quantitative segregation analysis, it is concluded that growth

is subjected to turbulent free density driven melt convection; this results in localized

thermal perturbations which penetrate the solute boundary layer and lead to melt-back.

Subsequent regrowth and dopant incorporation appear largely controlled by fluid dynamics

at the phase boundary and cannot be interpreted on the basis of the Burton, Prim and

Slichter theory. A transmission micrograph of a GaAs segment cut normal to the growth

axis (conventional wafer geometry) and polished on both sides was subjected to dislocation

analysis (fig. 5). The visibility of the complex dislocation network is attributed to

decoration of the dislocations by dopant elements. It should be pointed out that a

comparative analysis of dislocations in GaAs grown by the LEC technique with GaAs

grown by the horizontal Bridgman technique revealed fundamental differences in density,

distribution and geometry (fig. 6).
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Analysis of semi-insulating GaAs indicated transparency, absence of contrast

generating media, to 1 pm radiation in bright field transmission mode. Using dark fie:d

NIR illumination, extensive scattering centers of submicron dimensions are observed. The

scattering centers, precipitates, appear as decorations of dislocations and thus delineate the

location of these otherwise invisible defects (fig. 7).

Unambiguous identification of dislocations in semiconductors has thus far been

accomplished primarily by electron microscopy and X-ray topography. These approaches

are destructive and/or time consuming respectively, thus finding limited application. The

third and most widely used approach to dislocation identification, chemical etching,

although destructive in nature, is convenient because of its simplicity. Its use is based on

the fundamental assumption that the termination of dislocations on the surface gives rise to

a local modification of the etch rate and thus results in the generation of etch pits. Etch pit

densities are equated with dislocation densities.

There exits in most instances uncertainty as to the one-to-one correspondence

between dislocations and etch-pits; chemical etchants can also generate pits that are not

related to dislocations and, on the other hand, there is no assurance that all dislocations

are revealed through etch pits.

Using near IR bright field transmission microscopy, dislocations in n-type GaAs

grown by the horizontal Bridgman technique are revealed in a non-destructive manner

through contrast due to impurity decoration of the dislocation lines (fig. 6). By subjecting

8



the same wafer to photo-etching, etch pits are generated which can~ be identified (and

counted) using interference contrast microscopy with white light in reflection mode

(fig. 8a). Operating the microscope in transmission mnode, the same sample area yields the

transmission image shown 'in fig. 8b. Accordingly it is established that each etch pit on the

surface is associated with a dislocation and, on the other hand, that the termination of each

(decorated) dislocation is an etch pit.

it should be pointed out that the establishment of correspondence between

dislocations and etch pits cannot be generalized. It must be verified for each particular

material system and for the specific etching procedure usecd.

In the last phase of this research effort commercial GaAs wafers were analyzed for

surface damage. It was found that all wafers fail to exhibit processing induced surface and

subsurface damage when viewed in reflected NIR Nomarski interference contrast. All

wafers, on the other hand, do exhibit varying degrees of subsurface damage when viewed in

phase contrast NIR transmission mode (fig. 9).

9
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Fig.4 Quantitative Dopant Segregation Analysis in M-LEC GaAs Based on NIR Absorption

Fig.5 Dislocation Network in Doped LEO GaAs as Revealed by NIR Transmission Microscopy
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Fig.8 (a) GaAs grown by the horizontal Bridgman technique; the wafer surface shown was
subjected to photo-etching; notice etch pits, presumed to correspond to surface terminations

of dislocations.
(b) The same area of the wafer as shown in (a) observed in NIR bright field transmission
mode; notice the dislocation lines extending from each etch pit.
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CONCLUSIONS

NIR transmission microscopy combined with computational image analysis provides

a means for quantitative defect analysis with high sensitivity and spatial resolution. The

developed procedures provide micro- and macro-scale analyses which can contribute to an

elucidation of growth and segregation phenomena. The sensitivity and resolution achieved

permits the identification of gravitational effects on crystal perfection resulting during

growth from the melt and from solution. Compatibility of the analytical procedure with

tele-operation has been established and is expected to provide for a major a dvance in

efforts to explore the potential of reduced gravity environment for electronic materials

research.
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